

SSR & RTCM – Current Status

Gerhard Wübbena, Martin Schmitz, Jannes Wübbena

Geo++[®] GmbH 30827 Garbsen, Germany <u>www.geopp.de</u>

Outline

- RTCM SC104 WG's
- SSR Today
- SSR Formats
 - SC104 RTCM-SSR
 - Geo++ RTCM 4090
- . SSR Application Testbed
- . Summary/Outlook

RTCM SC104 – Working Groups

RTCM SC104 – Working Groups

- . GLONASS, Galileo, BDS, QZSS
 - GNSS specific tasks (signals, IODE, ephemeris, leap seconds, ...)
- RTCM 3
 - MSM for new signals (IRNSS, GLONASS CDMA)
 - Maintain the Standard Document
- Network RTK
 - Inactive not enough interest in MAC, FKP, .. for new GNSS and signals
- Coordinate Transformation
 - 15 Parameter message, service reference system identification
- Private Services (originally a EUPOS initiative) not succeeded
- DGNSS Version 2.4 Interoperability testing in progress
- . SSR
 - Details following
- Interoperability WG
 - Responsible for all interoperability testing since spring 2017

. SSR Today

- . SSR Formats
 - SC104 RTCM-SSR
 - Geo++ RTCM 4090
- . SSR Application Testbed
- . Summary/Outlook

SSR – SSR Today

- State Space Representation
- · different SSR services are in operation, examples are
 - IGS Precise Point Positioning (PPP)
 - main state parameters (IGS products) orbits, clocks, (VTEC)
 - SBAS
 - main state parameters orbits, clocks, VTEC
 - Proprietary Systems with satellite communication
 - Omnistar, Starfire, Veripos/Terrastar, CenterPoint RTX, ...
 - Network RTK services based on SSM
 - complete states / conversion to OSR
 - QZSS CLAS

© 2017 Geo++[®] GmbH

- . complete states / L6 SV transmission
- combinations of above showing up ...

- current status of open SSR format developments
 - SC104 RTCM-SSR
 - standardized RTCM-SSR messages
 - proposed RTCM-SSR messages
 - QZSS Compact SSR messages
 - Geo++
 - RTCM3-4090 Geo++ RTCM messages
 - Geo++ SSRG messages
 - Geo++ SSRZ format

- SSR Today
- SSR Formats
 - SC104 RTCM-SSR
 - Geo++ RTCM 4090
- SSR Application Testbed
- . Summary/Outlook

Standardization – RTCM-SSR

Since 2007 the SSR working group of the Radio Technical Commission for Maritime Services (**RTCM**) Special Committee **104** is developing a standard message format for SSR messages.

Goals of RTCM-SSR development are

- that messages are self-contained, flexible and non restricting
- and serve scalable GNSS applications with different accuracy requirements.

Status of standardization

- is slowed down, because of missing agreement on performed interoperability testing
- new Interop-WG established and responsible for new test setup and organisation
- consensus is/may be expected after testing of a complete set of SSR messages.

Standardized (2011) ⁺	Proposed (since 2013)	In Preparation (since 2016)
Orbits*	Phase Biases	Slant TEC (STEC)
Clocks*	Vertical TEC (VTEC)	Troposphere
Code Biases*		Compressed Messages
User Range Accuracy		

*: for GPS and GLONASS only, messages are proposed for Galileo, QZSS, BDS & SBAS

SSR Standardization - Satellite Biases

Every transmitted GNSS signal component experiences **a specific signal delay** (bias) **in every satellite** hardware/software.

Satellite Biases are defined

- as "absolute biases" (may contain remaining/average/reference receiver biases),
- for satellite code and phase signals,
- which inherently supports relative biases.

It is expected, that **all** software dependent **bias concepts can be mapped to the RTCM-SSR** approach.

example

- error components: satellite clock error dt and code biases B*i and phase biases B*i
- combined clock and signal signal delay error at satellite antenna:

dC1C dC2W dC2C dC5I dL1W dL2W dL2C		dt + BC1 dt dt dt dt dt dt dt	C + BC2W + BC2C +	BC5I + BL1W	/ + BL2W	,
dL2W	=	dt dt			+ BL2W	
dL5I	=	dt			· DL2O	+ BL5I

linear dependency between clock and bias terms
==> only 7 (n_signal -1) independent parameters

SSR Standardization - Proposed Multi-Stage Concept

The multi-stage model

- utilizes **different messages** for the same GNSS error component.
- constituents from different messages are added, which adds accuracy.
- is required for e.g. spatial variation of atmospheric parameters or optimal data compression
- and allows different service applications/accuracies.

An example is the ionosphere, which consists of one or more constituents provided as

- an initial Vertical TEC spherical harmonics model
- and/or slant TEC components
- and/or a gridded TEC component.

4th EUPOS Technical Meeting

November 21-22, 2017, Bratislava, Slovakia

SSR Standardization – Additional Corrections

- additional correction to be considered for SSR positioning
 - satellite-receiver phase wind-up effect (satellite attitude)
 - (absolute) satellite antenna phase and group delay variations (PCV, GDV)
 - site displacement effects (plate motion, solid earth tide, pole tide, ocean loading, atmospheric loading, local displacement)
 - relativistic effects
 - higher order ionosphere
 - (absolute) receiver antenna phase and group delay variations (PCV, GDV)
- requires
 - SSR Standardization or
 - definition for specific services

Remark – Variety of GNSS Signals and Interoperability

. satellite view

- variety of GNSS signals in space according to GNSS Interface Control Document (ICD), respectively
- receiver view
 - variety of tracked signals by GNSS receivers
- every phase and code signal has inherently a signal biases
- consequences
 - complex task for GNSS services
 - support of legacy and latest technology receivers on the market

GNSS System	# of Frequencies	# of Observations (receiver view*)
GPS	3 L1 L2 L5	9 10 3
GLONASS	3 G1 G2 G3	2 2 3
Galileo	5 E1 E5a E5b E5(E5a+E5b) E6	5 3 3 3 5
BDS	3 B1 B2 B3	3 3 3
QZSS	4 L1 L2 L5 L6	5 3 3 3
SBAS	2 L1 L5	1 3
IRNSS	2 L5 S	4 4

- . SSR Today
- SSR Formats
 - SC104 RTCM-SSR
 - Geo++ RTCM 4090
- . SSR Application Testbed
- . Summary/Outlook

- . RTCM-SSR developments
 - scalable GNSS correction (stages 1 to 3)
 - . focus on SSR content
 - broad consensus/acceptance
 - no exclusion of any SSR approach
 - no emphasis on compression
 - compression (stage 4)
- . Geo++ SSRZ development
 - full set of state parameters
 - for scalable GNSS correction services
 - compression (entropy codng) for optimized bandwidth (all media, including satellite L-Band links)
 - continuity/compatibility of SSR content(i. e. with standardized/proposed RTCM SSR)

Main Features of Geo++ SSRZ

- satellite and message grouping (e. g. no separation of GNSS, low and high rate message)
 - information that can only be used together is in one message
- asynchronous update of SSR parameters (e.g. Low rate message @ 30s High rate message @ 5s)
- adaptive/dynamic resolution of SSR parameters to fit available bandwith
 - parameter resolution
 (e. g. optimized for parameter, compression)
 - in time (e. g. update rate)
 - in space (e. g. different grids)
 - especially for atmospheric SSR parameters
- entropy encoding
 - use of statistical characteristics of SSR parameters
- . static data defined in meta-data
 - no mandatory transmission
 - support optional transmission
- (e. g. download site)
- (e.g. piggyback)

- PPP like service
 - including orbits, clocks, code biases, phase biases (2 Signals)
 - low rate data @ 30s / high rate data @ 5s
 - bandwidth required about 4bps / satellite
- Network RTK Services
 - require additionally atmospheric corrections based on grids
 - bandwidth under investigation (expected: <0.1 bps / satellite / grid)
- service specific extensions of SSRZ
 - GNSS integrity information
 - private services
 - selective access control
 - . through message encryption

- . SSR Today
- . SSR Formats
 - SC104 RTCM-SSR
 - Geo++ RTCM 4090
- . SSR Application Testbed
- . Summary/Outlook

plots: courtesy of Martin Freitag, SAPOS Bayern

SSR Application – SSR2OSR

RTCM-SSR-Testbed of the AdV

- AdV's project group "Precise Point Positioning" (PPP) is operator of a German-wide SSR-Testbed (and Bavaria-wide)
- testing of "from-the-shelf" standard GNSS RTK receivers
 - differently "scaled" SSR (corrected states/reference station density)
- demonstration/verification of SSR2OSR for legacy rovers
- top: Bavarian-wide SSR, closest station 28 km, no complete ionospheric, with tropospheric correction
- bottom: German-wide SSR, closest station 70 km, no complete ionospheric, without tropospheric correction

AdV: Working Committee of the Surveying Authorities of the Laender of the Federal Republic of Germany, www.adv-online.de

November 21-22, 2017, Bratislava, Slovakia

OSR

Position

OSR-Rover

OSR-Rovei

SSR2OSF

OSR-Rover

- . SSR Today
- . SSR Formats
 - SC104 RTCM-SSR
 - Geo++ RTCM 4090
- . SSR Application Testbed
- Summary/Outlook

Summary/Outlook

- State Space Representation (SSR) is most convincing GNSS augmentation technology to cope with the increase of new signals and new constellations.
- SSR can replace OSR techniques for all types of GNSS positioning applications with better performance and less costs.
- SSR can serve mass market applications (broadcast)
- . SSR standardization is challenging.
- . RTCM-SSR standarization delayed
- other standardization organisations or industry groups will come up with an alternative non-RTCM standard

