

Luis Ros Valiente, Ph.D. Trimble - Advanced Positioning Division

4th EUPOS Technical Meeting - Bratislava (Slovakia), November 21-22, 2017

Trimble Real-Time Network Solutions: PIVOT Software

GNSS modernization

Introduction New satellites and signals Trimble RTX: a new approach for GNSS network processing

An introduction to Trimble PIVOT Platform

Main features Compatibility with 3rd party receivers

Conclusions

GNSS modernization

Introduction

New satellites and signals Trimble RTX: a new approach for GNSS network processing

An introduction to Trimble PIVOT Platform

Main features Compatibility with 3rd party receivers

Conclusions

・ロト ・四ト ・ヨト ・ヨ

э

Evolution of GNSS markets in the 2015-2025 period:

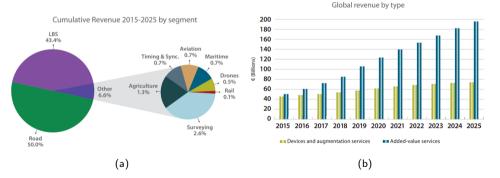


Figure 1: GNSS revenue trends. Source: GNSS Market Report, Issue 5, copyright (C) European GNSS Agency, 2017. Trimble.

> New market opportunities for service providers.

- New market opportunities for service providers.
- But also new requirements and challenges:
 - > Modernization and compatibility with new GNSS constellations and signals.

- New market opportunities for service providers.
- But also new requirements and challenges:
 - Modernization and compatibility with new GNSS constellations and signals.
 - New critical applications might require increased robustness, redundancy and authentication.

- New market opportunities for service providers.
- But also new requirements and challenges:
 - > Modernization and compatibility with new GNSS constellations and signals.
 - New critical applications might require increased robustness, redundancy and authentication.
 - Communications between networks and users are essential.

Outline

GNSS modernization

Introduction New satellites and signals Trimble RTX: a new approach for GNSS network processing

An introduction to Trimble PIVOT Platform

Main features Compatibility with 3rd party receivers

Conclusions

Evolution of the number of GNSS satellites:

Evolution of the number of GNSS satellites:

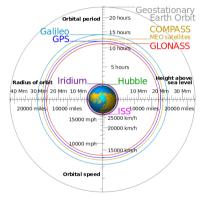


Figure 2: Comparison of satellite orbits. By Cmglee & Geo Swan, distributed under a CC BY-SA 3.0 license via Wikimedia Commons.

Evolution of the number of GNSS satellites:

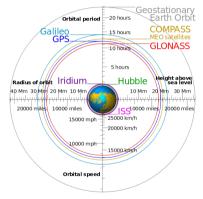


Figure 2: Comparison of satellite orbits. By Cmglee & Geo Swan, distributed under a CC BY-SA 3.0 license via Wikimedia Commons.

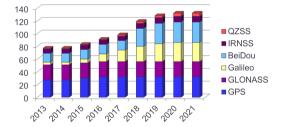


Figure 3: Evolution of the total number of available GNSS satellites for the 2013-2021 period.

ANSFORMING THE WAY THE WORLD WORKS

Trim

• • • • • • • • • • •

hle

GNSS satellites visible today in Bratislava:

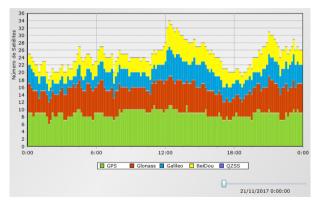


Figure 4: Number of GNSS satellites visible from Bratislava on Nov. 21st 2017. From Trimble GNSS Planning Online.

TRANSFORMING THE WAY THE WORLD WORKS

How can all this information be processed in real-time?

- How can all this information be processed in real-time?
- More signals, more satellites and more CORS leads to an increased number of unknowns in Least Squares Estimations:

- How can all this information be processed in real-time?
- More signals, more satellites and more CORS leads to an increased number of unknowns in Least Squares Estimations:

Year	Constellation	Stations	Satellites	Signals	Unknowns	CPU Scale Factor
1998	GPS	100	8	2	1.700	1

- How can all this information be processed in real-time?
- More signals, more satellites and more CORS leads to an increased number of unknowns in Least Squares Estimations:

Year	Constellation	Stations	Satellites	Signals	Unknowns	CPU Scale Factor
1998	GPS	100	8	2	1.700	1
2005	GPS+GLO	100	20	2	4.300	14

- How can all this information be processed in real-time?
- More signals, more satellites and more CORS leads to an increased number of unknowns in Least Squares Estimations:

Year	Constellation	Stations	Satellites	Signals	Unknowns	CPU Scale Factor
1998	GPS	100	8	2	1.700	1
2005	GPS+GLO	100	20	2	4.300	14
2017	All (EU)	100	40	3	12.100	361

- How can all this information be processed in real-time?
- More signals, more satellites and more CORS leads to an increased number of unknowns in Least Squares Estimations:

Year	Constellation	Stations	Satellites	Signals	Unknowns	CPU Scale Factor
1998	GPS	100	8	2	1.700	1
2005	GPS+GLO	100	20	2	4.300	14
2017	All (EU)	100	40	3	12.100	361
2017	All (APAC)	100	50	3	15.100	693

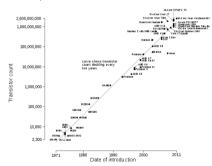
- How can all this information be processed in real-time?
- More signals, more satellites and more CORS leads to an increased number of unknowns in Least Squares Estimations:

Year	Constellation	Stations	Satellites	Signals	Unknowns	CPU Scale Factor
1998	GPS	100	8	2	1.700	1
2005	GPS+GLO	100	20	2	4.300	14
2017	All (EU)	100	40	3	12.100	361
2017	All (APAC)	100	50	3	15.100	693
2020	All	500	50	4	100.500	207.158

- How can all this information be processed in real-time?
- More signals, more satellites and more CORS leads to an increased number of unknowns in Least Squares Estimations:

Year	Constellation	Stations	Satellites	Signals	Unknowns	CPU Scale Factor
1998	GPS	100	8	2	1.700	1
2005	GPS+GLO	100	20	2	4.300	14
2017	All (EU)	100	40	3	12.100	361
2017	All (APAC)	100	50	3	15.100	693
2020	All	500	50	4	100.500	207.158

Is Differential GNSS the best approach?



Moore's Law on microprocessors count:

Moore's Law on microprocessors count:

 Number of transistors in a integrated circuit doubles every two years.

Figure 5: Graph by Wgsimon, distributed under a CC BY-SA 3.0 license via Wikimedia Commons.

Trimble

э

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Moore's Law on microprocessors count:

- Number of transistors in a integrated circuit doubles every two years.
- 10 nm is the current distance between transistors.

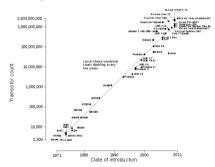


Figure 5: Graph by Wgsimon, distributed under a CC BY-SA 3.0 license via Wikimedia Commons.

Trimble

э

イロト イポト イヨト イヨト

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Moore's Law on microprocessors count:

- Number of transistors in a integrated circuit doubles every two years.
- 10 nm is the current distance between transistors.
- Natural limit: Atom size?

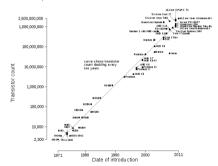


Figure 5: Graph by Wgsimon, distributed under a CC BY-SA 3.0 license via Wikimedia Commons.

Trimble

э

Microprocessor Transistor Counts 1971-2011 & Moore's Law

GNSS modernization

Introduction New satellites and signals Trimble RTX: a new approach for GNSS network processing

An introduction to Trimble PIVOT Platform

Main features Compatibility with 3rd party receivers

Conclusions

 One way of handling CPU load is to introduce absolute positioning and ambiguity resolution instead of differential.

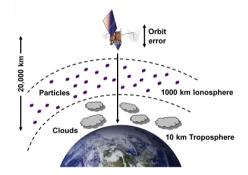


Figure 6: Unlike DGNSS, RTX does not use relative positioning to other reference stations.

• • • • • • • • • • •

> Trimble RTX introduced in 2012 through the CenterPoint RTX correction service.

- ▶ Trimble RTX introduced in 2012 through the CenterPoint RTX correction service.
- Centimetre-level accuracy worldwide in real-time.

(a) Coverage via L-band.

(b) Coverage via Internet.

• • • • • • • • • • •

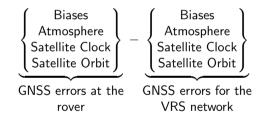
Figure 7: Trimble CenterPoint RTX coverage maps. Source: http://www.trimble.com.

How Trimble RTX works?

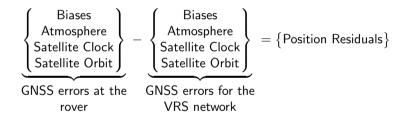
How Trimble RTX works?

Classical DGNSS approach for VRS (simplified):

How Trimble RTX works?


Classical DGNSS approach for VRS (simplified):

How Trimble RTX works?


Classical DGNSS approach for VRS (simplified):

How Trimble RTX works?

Classical DGNSS approach for VRS (simplified):

GNSS errors are cancelled out or modelled.

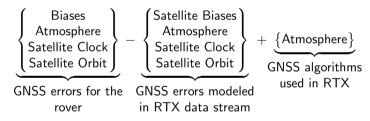
Residuals remain constant across the VRS network.

▶ How Trimble RTX works?

► Trimble RTX approach (simplified):

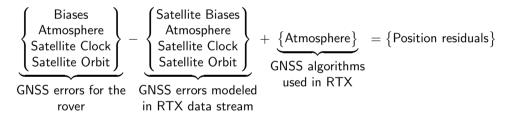
How Trimble RTX works?

Trimble RTX approach (simplified):


Biases Atmosphere Satellite Clock Satellite Orbit GNSS errors for the

rover

How Trimble RTX works?


Trimble RTX approach (simplified):

How Trimble RTX works?

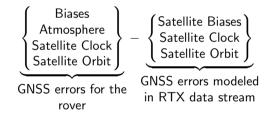
Trimble RTX approach (simplified):

- All GNSS errors are modelled with high accuracy.
 Periduals remain constant globally.
- Residuals remain constant globally.

▶ How Trimble RTX technology can benefit VRS networks?

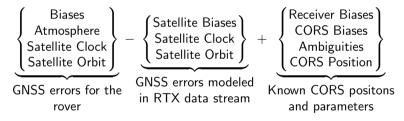
> RTX technology is integrated in the new Trimble PIVOT RTXNet network processor.

- > RTX technology is integrated in the new Trimble PIVOT RTXNet network processor.
- > RTX algorithms estimate accurately GNSS errors if CORS positions are known:

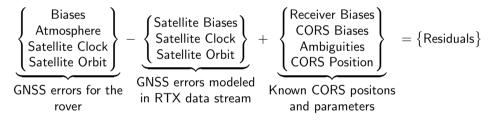


- > RTX technology is integrated in the new Trimble PIVOT RTXNet network processor.
- ▶ RTX algorithms estimate accurately GNSS errors if CORS positions are known:

Biases Atmosphere Satellite Clock Satellite Orbit GNSS errors for the rover



- > RTX technology is integrated in the new Trimble PIVOT RTXNet network processor.
- RTX algorithms estimate accurately GNSS errors if CORS positions are known:


- > RTX technology is integrated in the new Trimble PIVOT RTXNet network processor.
- > RTX algorithms estimate accurately GNSS errors if CORS positions are known:

▶ How Trimble RTX technology can benefit VRS networks?

- ▶ RTX technology is integrated in the new Trimble PIVOT RTXNet network processor.
- > RTX algorithms estimate accurately GNSS errors if CORS positions are known:

Residuals are used to generate network RTK corrections (VRS, RTC3Net and FKP).
 Transparent process for the network users: rovers work in RTK network mode.

Year	Constellation	Stations	Satellites	Signals	Unknowns	CPU Scale Factor	Reduced CPU by RTX
1998	GPS	100	8	2	1.700	1	$1 imes 10^{-4}$

Year	Constellation	Stations	Satellites	Signals	Unknowns	CPU Scale Factor	Reduced CPU by RTX
1998	GPS	100	8	2	1.700	1	$1 imes 10^{-4}$
2005	GPS+GLO	100	20	2	4.300	14	$14 imes 10^{-4}$

Year	Constellation	Stations	Satellites	Signals	Unknowns	CPU Scale Factor	Reduced CPU by RTX
1998	GPS	100	8	2	1.700	1	$1 imes 10^{-4}$
2005	GPS+GLO	100	20	2	4.300	14	$14 imes 10^{-4}$
2017	All (EU)	100	40	3	12.100	361	$3.61 imes10^{-2}$

Year	Constellation	Stations	Satellites	Signals	Unknowns	CPU Scale Factor	Reduced CPU by RTX
1998	GPS	100	8	2	1.700	1	$1 imes 10^{-4}$
2005	GPS+GLO	100	20	2	4.300	14	$14 imes 10^{-4}$
2017	All (EU)	100	40	3	12.100	361	$3.61 imes10^{-2}$
2017	All (APAC)	100	50	3	15.100	693	$6.93 imes10^{-2}$

Year	Constellation	Stations	Satellites	Signals	Unknowns	CPU Scale Factor	Reduced CPU by RTX
1998	GPS	100	8	2	1.700	1	$1 imes 10^{-4}$
2005	GPS+GLO	100	20	2	4.300	14	$14 imes 10^{-4}$
2017	All (EU)	100	40	3	12.100	361	$3.61 imes10^{-2}$
2017	All (APAC)	100	50	3	15.100	693	$6.93 imes10^{-2}$
2020	All	500	50	4	100.500	207.158	8,21

GNSS modernization

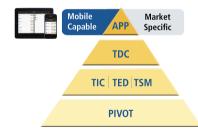
Introduction New satellites and signals Trimble RTX: a new approach for GNSS network processing

An introduction to Trimble PIVOT Platform

Main features

Compatibility with 3rd party receivers

Conclusions



Trimble.

- 2

イロト イヨト イヨト イヨト

> Trimble PIVOT Software: one platform, multiple applications:

Trimble

- 34

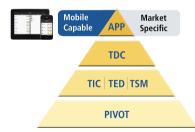
イロト イヨト イヨト イヨト

▶ Trimble PIVOT Software: one platform, multiple applications:

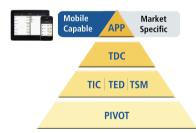

▶ Real-time correction services: ie.: RTXNet processor.

Trimble

3


- > Trimble PIVOT Software: one platform, multiple applications:
 - ▶ Real-time correction services: ie.: RTXNet processor.
 - Post-processing services: ie.: On-line Processing.

(S) Trim


3

- > Trimble PIVOT Software: one platform, multiple applications:
 - ▶ Real-time correction services: ie.: RTXNet processor.
 - Post-processing services: ie.: On-line Processing.
 - Geodetic control applications: ie.: Integrity Manager.

3

- Trimble PIVOT Software: one platform, multiple applications:
 - ▶ Real-time correction services: ie.: RTXNet processor.
 - Post-processing services: ie.: On-line Processing.
 - Geodetic control applications: ie.: Integrity Manager.
 - Meteorological applications: ie.: Atmospheric App.

> A few more words about RTXNet network processor...

▶ A few more words about RTXNet network processor...

> The full GNSS network solution that does not require a full GNSS network.

3

- A few more words about RTXNet network processor...
 - > The full GNSS network solution that does not require a full GNSS network.
 - > Sparse GNSS: allows full GNSS network solution in heterogeneous networks.

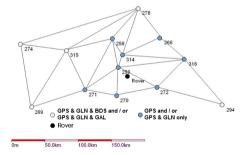


Figure 9: Sample network with sparse GNSS configuration.

• □ ▶ ● □ ▶ ● ■ ▶ ● ■ ■

3

- A few more words about RTXNet network processor...
 - > The full GNSS network solution that does not require a full GNSS network.
 - > Sparse GNSS: allows full GNSS network solution in heterogeneous networks.
 - Supports correction services providers a smother transition to full GNSS.

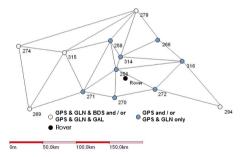


Figure 9: Sample network with sparse GNSS configuration.

GNSS modernization

Introduction New satellites and signals Trimble RTX: a new approach for GNSS network processing

An introduction to Trimble PIVOT Platform

Main features

Compatibility with 3rd party receivers

Conclusions

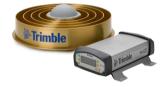
> Purpose: full GNSS constellation support on RTXNet network processor.

Purpose: full GNSS constellation support on RTXNet network processor.

Currently supporting Leica's GR30 and GR50.

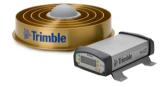
- Purpose: full GNSS constellation support on RTXNet network processor.
- Currently supporting Leica's GR30 and GR50.
- Additional 3rd party receiver models scheduled for next major PIVOT software updates.

- Purpose: full GNSS constellation support on RTXNet network processor.
- Currently supporting Leica's GR30 and GR50.
- Additional 3rd party receiver models scheduled for next major PIVOT software updates.
- Trimble works in cooperation with major receiver manufacturers to support them in PIVOT.

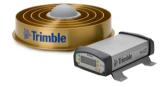


Benefits of using Trimble NetR9 with PIVOT software:

- Benefits of using Trimble NetR9 with PIVOT software:
 - Direct receiver control from PIVOT: ie.: Storage Integrity, receiver firmware upgrade via PIVOT, ...



- Benefits of using Trimble NetR9 with PIVOT software:
 - Direct receiver control from PIVOT: ie.: Storage Integrity, receiver firmware upgrade via PIVOT,
 - NetR9 and PIVOT development teams work together.



- Benefits of using Trimble NetR9 with PIVOT software:
 - Direct receiver control from PIVOT: ie.: Storage Integrity, receiver firmware upgrade via PIVOT,
 - NetR9 and PIVOT development teams work together.
 - Integrated technical support team for NetR9 and PIVOT.

- Benefits of using Trimble NetR9 with PIVOT software:
 - Direct receiver control from PIVOT: ie.: Storage Integrity, receiver firmware upgrade via PIVOT, ...
 - NetR9 and PIVOT development teams work together.
 - Integrated technical support team for NetR9 and PIVOT.
 - Latest receiver biases information always available.

- Benefits of using Trimble NetR9 with PIVOT software:
 - Direct receiver control from PIVOT: ie.: Storage Integrity, receiver firmware upgrade via PIVOT,
 - NetR9 and PIVOT development teams work together.
 - Integrated technical support team for NetR9 and PIVOT.
 - > Latest receiver biases information always available.
 - ... and once again: receiver biases are essential for optimal results.

Outline

GNSS modernization

Introduction New satellites and signals Trimble RTX: a new approach for GNSS network processing

An introduction to Trimble PIVOT Platform

Main features Compatibility with 3rd party receivers

Conclusions

The GNSS market trends seem to be very optimistic for correction services providers.

- The GNSS market trends seem to be very optimistic for correction services providers.
- ▶ GNSS modernization is one of the biggest challenges in front of us.

- The GNSS market trends seem to be very optimistic for correction services providers.
- ▶ GNSS modernization is one of the biggest challenges in front of us.
- Trimble has already the technology and solutions ready to support correction services providers in the GNSS modernization process:
 - Trimble RTXNet processor uses state-of-the art technology fully compatible with new constellations and signals.
 - Trimble PIVOT and its RTXNet network processor allow correction services providers an easy and smooth transition to full GNSS.
 - ▶ Trimble PIVOT software comprises all the solutions required by network operators.

GNSS modernization

Introduction New satellites and signals Trimble RTX: a new approach for GNSS network processing

An introduction to Trimble PIVOT Platform

Main features Compatibility with 3rd party receivers

Conclusions

Luis Ros Valiente, Ph.D. Trimble - Advanced Positioning Division

4th EUPOS Technical Meeting - Bratislava (Slovakia), November 21-22, 2017

Trimble Real-Time Network Solutions: PIVOT Software